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Abstract. Using impurity calculations in the classical Heisenberg model, we show that 
paramagnetic impurities doped into collinear frustrated antiferromagnets can lead to the 
spontaneous formation of localised spin components orthogonal to the original quantisation 
direction. We suggest how transitions from collinear to non-collinear phases might occur 
as a long-range phase coherence between locally stable non-collinear impurities. There 
is some recent diffuse neutron scattering evidence for non-collinear impurities in single- 
domain crystals of MnCu and we calculate the diffuse scattering from our model as a 
prediction for possible future experimental verification. 

1. Introduction 

Transition metal alloys based on y-Mn show very interesting magnetic behaviour. Man- 
ganese quenched into a face centre cubic structure exhibits ‘type I’ antiferromagnetism. 
This is a sequence of ferromagnetic x-y layers which alternate in spin direction along 
the z axis. The z axis becomes inequivalent to the other Cartesian directions and the 
magnetism induces a huge tetragonal distortion of approximately six per cent parallel 
to the z axis [l]. Neutron scattering shows that the spins align parallel to the z axis 
where they are held in place by spin-orbit coupling. The fundamental physical picture 
is of strong short-range antiferromagnetic interactions between spins, leading to long- 
range antiferromagnetism at about 500 K, corresponding to a spin wave bandwidth of 
-120 meV [ 2 ] ,  together with a weak coupling to the lattice directions corresponding 
to a spin wave gap of about -4-6 meV [3]. 

When another transition metal is doped into the manganese there are quite dramatic 
changes in behaviour. Fe [4], Ir [5], Ni [6] and Cu [7] all substantially reduce the 
tetragonal distortion and for Fe, Ir and Ni there is evidence of a cubic phase which 
is stabilised at doping concentrations of approximately a quarter. For the Mn-Ni 
system a sequence of four phases is observed as a function of concentration [6]. This 
behaviour is being explained in terms of spin reorientation, with spins rotating away 
from the z axis and into the x-y plane [8 ] .  

Most simple 
lattices are bipartite, which means that there are two natural sublattices with all the 
nearest neighbours of one sublattice on the other sublattice. Antiferromagnetism is 
unfrustrated on a bipartite lattice, since the spin configuration with spins pointed 

The face centre cubic lattice is antiferromagnetically frustrated. 
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in opposite directions on the two natural sublattices finds all nearest neighbours 
antiparallel. The face centre cubic lattice is not bipartite and in any spin configuration 
only a fraction of nearest neighbours can be made simultaneously antiparallel, the 
rest are not antiparallel and so are frustrated. For the face centre cubic lattice, the 
maximum possible fraction of antiparallel spins is two thirds, with the other third 
being parallel (appendix A). This bound is achieved in type I antiferromagnetism. The 
crucial observation for this topology is that there are other spin configurations which 
also achieve this bound. Indeed a linear superposition of type I antiferromagnets 
ordered parallel to different Cartesian directions also achieves the bound. These are 
the multiple-Q states [9] and they necessarily contain non-collinear spins. The magnetic 
symmetry group of these states is variable and the triple-Q state, an equal amplitude 
sum of the collinear states in each of the three Cartesian directions, has cubic symmetry. 
The cubic antiferromagnet found in the y-Mn alloys is explained as a triple-Q state [8]. 

In previous work, the questions: ‘How might the different multiple-Q states be 
experimentally separated?’ [ 101 and ‘What physical phenomena might stabilise the 
different phases?’ [ I l l  have been studied. In this paper we look at the question of 
how the system might transform from one phase to another, and in particular whether 
or not the transition would be sharp. The motivation came from a diffuse scattering 
experiment [12]. Diffuse scattering from a single-domain crystal of MnCu seems to 
indicate non-collinear spin impurities in a system with pure collinear long-range order. 
This is a very surprising result because it violates a local symmetry of the system. 

Collinear magnets have a quantisation direction to which all the spins in the system 
are parallel. Spin rotations about this direction constitute local symmetries. Further, 
substitutional inclusions of paramagnetic impurities maintain these local symmetries, 
since a paramagnetic atom is symmetric under spin rotations in all directions. Non- 
collinear spins involve a breaking of these symmetries, and the question becomes: ‘By 
what physical mechanism is the symmetry broken?’. There is the possibility of a phase 
transition to a new phase with long-range order for the broken symmetry, but are there 
other possibilities associated with the disorder, and how might precursor phenomena 
be exhibited? 

For the case of 
disordered ferromagnets the interest revolves around loss of moment. The atoms have 
a fairly well defined local moment and the whole moment does not seem to be involved 
in the long-range phase coherence. Where does the moment go? Initially it was 
thought that the local moment was reduced, but more recently it has been suggested 
that non-collinear fluctuations are the cause. The idea is that short-range atomic order 
sets up a local lattice symmetry parallel to which spin-orbit coupling tries to align the 
moments. Longer-range variations in this local direction then cause a non-collinear 
component which can explain the loss of moment [13]. In this paper we will present an 
argument for loss of average moment into other directions caused by the local release 
of antiferromagnetic frustration, a quite distinct physical phenomenon. 

There is disorder in the experimental alloys we are considering. Although the atomic 
positions are regular, the impurities are fairly random with only a certain amount of 
short-range order. We do not believe that the effects of the disorder are as crucial as in 
disordered ferromagnets, but neither do we believe that the transitions are as smooth 
as a pure theory suggests. It has previously been shown that for a pure theory a spin 
wave mode would soften at  a spin reorientation phase transition [14]. One question 
addressed in this paper is whether spin wave softening would be expected to survive 
the inclusion of disorder into the description. 

Non-collinear spins have led to confusion in other systems. 
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The antiferromagnetic interactions are very much stronger than the forces that 
align the moments with the lattice directions. Any purely magnetic phenomena which 
cause non-collinear spins can therefore easily dominate. We suggest the formation of 
localised bound states of multiple-Q distortions as a source for loss of moment and of 
non-collinear effects. 

The mechanism that we propose requires several impurities in order to contribute 
and so we give a brief summary of the types of short-range order found in the y-Mn 
transition metal alloys. For the case of MnCu, clustering of impurities is observed [15]. 
Indeed there has been a huge amount of work on the order4isorder transition in this 
system [16]. Although the tetragonal distortion is reduced as Cu is introduced, the 
antiferromagnetic moment also decays and indeed vanishes before the advent of the 
cubic phase. For the case of MnNi, however, the impurities anti-cluster [17]. There is 
a low probability of finding nearest-neighbour impurities and an enhanced probability 
of finding next-nearest-neighbour impurities. The tetragonal distortion is destroyed in 
the presence of the antiferromagnetism for this alloy although two other phases are 
traversed before the cubic antiferromagnet is found. Can we understand the differing 
stabilities of the cubic phase in these two alloys by considering the effects of short-range 
order on the magnetism? We consider both clustering and anti-clustering in this paper 
and compare the suggested pictures for a spin reorientation phase transition. 

There is a further clustering consideration and that is: ‘What causes the clustering?. 
If the magnetic phenomena that we describe are instrumental in the clustering then we 
ought to consider low-energy clusters. In fact the quenching and melting temperatures 
are quite high in comparison to the magnetic energy scale and the clustering probably 
occurs for a ‘coarser’ reason. We do however consider the local energy loss per 
impurity in our clusters in order to compare them on these grounds. One final subtlety 
here is that long-range magnetic phase coherence is not established at quenching 
temperatures and so any magnetically induced clustering might be better suited to a 
different quantisation direction than that for the observed long-range coherence. 

It is not clear how these alloys should be modelled. The first row transition 
series includes itinerant magnetism, but even itinerant systems show evidence of local 
moments above their transition temperatures. We will model y-Mn alloys with a local 
moment description with fixed moments of length 2pB [18]. The main reason is that 
such a description is easy to work with and more sophisticated questions can be 
addressed. We believe, however, that the nearest-neighbour configuration of atoms in 
the face centre cubic lattice prefers local moment behaviour to itinerancy. 

It is also not clear how the impurities should be described in these systems. The 
charge and spin states of the dopant atoms are unknown but there is fairly direct 
evidence that the total spin of the nickel dopant is zero [18] and simply counting the 
electrons in the known copper charge states suggests either spin zero or spin half. 
We will model the impurities by assuming that the moments are much reduced, but 
otherwise do not affect the host atoms. If itinerancy were dominant then we might 
expect the surrounding manganese spins to be altered in length to compensate for the 
impurity. We accept this possibility but it is not clear how to include it and so we 
neglect it. 

In section 2 we look at various clusters of impurities in the collinear ‘type I’ 
antiferromagnet. We also show the possibility of spontaneous local symmetry breaking. 
In section 3 we deduce a consistent picture for a phase transition based around the 
non-collinear impurities and in section 4 we make an attempt at describing the likely 
signatures of the phenomenon. 
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2. Impurity calculations 

We employ the classical limit of the Heisenberg model in our calculations: 

H = J C S i . S ,  
[ii'] 

where the coupling is antiferromagnetic ( J  =- 0), the spins are of fixed length (Si * Si  = 
S2), we include only nearest-neighbour bonds (denoted by [ii']) and each bond is 
included once only. We restrict our attention to zero temperature and the search for 
the ground state. This reduces the problem to determining the preferred orientations of 
the spins. 

Impurity spins are included by altering the lengths of some of the spins. We force 
all impurities to have the same spin length of K S  but allow IC to vary. This allows 
us to compare reduced moments with zero moments. Experiment suggests that the 
moment on the nickel atoms is small [18], but the copper moment is unclear and we 
should allow for the possibility of a spin copper atom, corresponding to IC - 1 for a 
saturated manganese moment of about 2 . 2 , ~ ~ .  

In the absence of impurities the ground state of the face centre cubic lattice is 
multiply degenerate and, although this drives the effects we are studying, it also causes 
severe interpretational problems. The inclusion of an impurity breaks this degeneracy 
and stabilises a non-collinear phase [19]. In competition with this effect in the real 
materials are quantum mechanical spin fluctuations and itineracy, namely fluctuations 
in spin length. Spin fluctuations promote collinearity [19] and itineracy can stabilise any 
of the spin arrangements [8]. When the concentration of impurities is low, the collinear 
phase is found in the experimental systems and we include none of the effects which 
stabilise this in our model Hamiltonian! Rather than complicate our description, we 
stabilise the collinear phase in our choice of boundary conditions. We use the collinear 
phase as a reference state and allow only a few spins around the impurity the freedom 
to reorientate. The remainder of the spins are held rigidly in the positions dictated 
by the collinear phase, and the interactions then feed this preferred direction into the 
cluster. As long as the disturbance decays as a function of distance from the impurity, 
we feel confident that our calculations make physical sense. 

We have considered one impurity previously [19] and we will analyse the single- 
impurity problem in more detail later. Under the present model assumptions, there 
is no local spin distortion provided that the cluster is small. This is precisely what 
might be predicted from the local symmetry argument. Each spin sits in the local field 
of its nearest neighbours and if these spins are collinear then the local field will be 
collinear. The spins on the surface of the cluster feed a unique quantisation direction 
into the cluster and unless a local mechanism instigates symmetry breaking the whole 
cluster will be forced collinear. For non-frustrated bipartite lattices no such mechanism 
exists and the ground state can be chosen to be collinear whatever the number or 
configuration of impurities. If the cluster in a bipartite lattice is simply connected 
then the collinear cluster is the unique classical ground state for the given quantisation 
direction. 

For frustrated systems there is a balance between parallel and antiparallel neigh- 
bours which can be disturbed by local fluctuations in the configuration of impurities. 
For the ground state in the absence of impurities, each spin has eight antiparallel 
and four parallel neighbours. The problems emerge when the impurities happen to 
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Figure 1. Two simple clusters of impurities which support non-collinear moments. The 
first is an ‘unbalanced‘ anticluster and the second is a ‘balanced’ cluster. Both clusters have 
spins, marked T, which are free to rotate with no corresponding change in Heisenberg 
energy. Primed spins and unprimed spins rotate in opposite directions. 

favour one of the two sublattices and locally cancel out the dominance of antiparallel 
neighbours. 

A careful count of nearest 
neighbours to the spins marked T shows that there is a balance of four parallel and 
four antiparallel. The energy of the state remains unchanged for all orientations of 
spins marked T .  This energy is the best possible for a collinear arrangement and so any 
small gain from a non-collinear configuration will stabilise it relative to the collinear 
arrangement. 

There is a simple and often used argument which shows that a non-collinear cluster 
is stable. If we consider the state where one T is rotated into the plane, then its eight 
non-impurity nearest neighbours all feel a component of the local field attempting to 
align them antiparallel to the special spin. If these eight neighbours are infinitesimally 
rotated, then they achieve a linear gain in energy from the orthogonal component 
and only lose energy at second order from the collinear component. An infinitesimal 
rotation is always relatively stable and so a non-collinear component is spontaneously 
created. 

There are two types of interpretational difficulty to be overcome in thinking about 
these non-collinear components. Firstly, in a real dilute alloy, there will be many such 
impurities with very small interactions between them. At reasonable temperatures we 
would expect the local orientations of these non-collinear moments to be uncorrelated 
and hence a macroscopic average would be expected to yield a vanishing non-collinear 
moment. The possibility of coherence between the non-collinear components will be 
addressed in the next section. The second difficulty involves the effect of quantum 
mechanical fluctuations. Quantum mechanics prefers total spin zero ground states 
over Ndel ordered states. For the present example, this would involve averaging the 
non-collinear component over all possible orientations in the plane. Competing with 
this are spin-orbit coupling energies which are trying to orient the local order parallel 
to the crystal axes. We will assume that the time scale for any quantum averaging is 
slow with respect to the time scale of our experimental probe and hence that the local 
order is observable. 

A study of the second cluster of figure 1 shows that the states where T and T’ 
are constrained to be antiparallel but are orientated as a pair in any direction are 
also degenerate with the collinear state and make better reference states from which to 
construct the non-collinear ground state to the cluster. 

In case it is thought that all non-collinear clusters have spins for which the numbers 

The simplest situations are depicted in figure 1. 
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of parallel and antiparallel neighbours balance in the collinear state, in figure 2 we 
depict two clusters where the maximum number of impurities neighbouring any one 
spin is three and two respectively and yet the ground states to these clusters are also 
non-collinear! This may be proven by considering infinitesimal rotations of the spins 
marked T .  If T and T’ are rotated in opposite directions then the first cluster achieves 
an energy saving at second order in the angle, whereas the second cluster remains 
degenerate at this order being destabilised by the coupling to infinitesimal rotations of 
the other neighbouring spins. 

Figure 2. Two clusters which are locally unstable to localised orthogonal Neel fluctuations 
amongst the spins marked T. 

In fact even a single impurity is unstable to non-collinear fluctuations. The 
degeneracies of the face centre cubic classical ground state form a one-dimensional 
family, an order more than the simpler frustrated topology of the triangular lattice 
for example. The Goldstone modes have corresponding freedom and we find two- 
dimensional Goldstone modes. In the ‘single-Q state, infinitesimal orthogonal Neel 
fluctuations restricted to one ferromagnetic x-y plane are Goldstone modes. Each spin 
loses energy from its collinear component, from the four net antiparallel neighbours, 
but gains the same energy from the non-collinear component of the four in-plane 
neighbours. An impurity in a neighbouring layer acts as a localised attractive potential 
to the Nkel fluctuations, since the spins which neighbour it lose energy from only three 
net antiparallel neighbours. Any attractive potential in two dimensions necessitates 
a bound state and so the impurity induces two bound states of localised orthogonal 
Neel fluctuations in the neighbouring planes. About thirty two spins are required to 
participate in order to stabilise each bound state and the resulting bound states are 
very long range, with the minor energy gain being unlikely to dominate the effects we 
have ignored which stabilise the collinear phase. Unless the effect is very short range 
we will henceforth ignore it. 

In this paper we have restricted attention to only one orthogonal component to the 
quantisation direction. Our reasoning is that firstly, the two-component calculations 
are simpler, secondly, that the spontaneous appearence of a third component would 
only occur in the case where the first two were locally frustrated-a rare event in 
the known concentrations doped into collinear alloys-and thirdly, on experimental 
grounds, the ‘double-Q state would seem to be a better state in which to consider 
fluctuations of the third component. 
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Figure 3. The atomic configurations of the clusters we solve. The spins marked T, U and 
Y are all free to reorientate, but all the other spins are held fixed. The circled spins do not 
couple to the non-collinear distortion. Primed spins and unprimed spins rotate in opposite 
directions. The magnitudes of the rotations are presented in figure 4 as a function of the 
spin scaling factor K. 

We perform cluster calculations on the impurity configurations of figure 3. The 
calculational details are relegated to appendix B. The angles through which the spins 
rotate are pictured in figure 4 as a function of the impurity spin length, IC, and the 
energies of the clusters are quoted in table 1 at IC = 0, namely for paramagnetic 
impurities. 

impurities in a spin 1 host is a possible scenario 
for copper alloyed into y-manganese. A cursory inspection of figure 4 immediately 
indicates that the present model is stable to non-collinear reorientation for IC - I .  Only 
the case of paramagnetic copper impurities might be expected to exhibit non-collinear 
impurities, and so henceforth we will set K = 0 and consider spinless impurities. 

We chose our clusters according to three criteria: clustering or anticlustering 
(denoted by Cu and Ni respectively), whether or not the collinear spins were 'balanced' 
(i.e. for each T there is a T'), and finally according to three instability types, marked 

As previously noted, spin 
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Figure 4. The spin co&igurations found in our non-collinear cluster"calcu1ations. The 
angles of rotation are plotted as a function of the spin scaling factor, K, of the doped 
impurities. 

by basic rotations of approximately 0", 30" and 90". The final classification comes from 
solving the 'T-cluster' and the angle through which the T-spins would rotate with all 
the other spins held fixed. The final cluster involves two distinct impurities and is a 
first pass at understanding the interactions between non-collinear impurities. 

Cluster (a)  is the smallest relevant impurity concentration that we have found 
which leads to short-range non-collinear spins. It is a 'balanced' anticluster which is 
only just stable with a basic rotation of 0". The rotations remain modest when the 
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Table 1. The energies of the non-collinear spin arrangements depicted in figures 3 and 4 
for the case where the impurity is paramagnetic (namely K = 0). The ‘static’ contributions, 
namely those due to the breaking of impurity bonds, for the collinear spin arrangements are 
given for comparison with the non-collinear energy savings. The cluster marked (e) T,U is 
that for (e) but with the V spins held fixed, it  is directly comparable with the two-impurity 
calculation (f). 

Energy per impurity (units of J S ’ )  

Non-collinear Collinear Non-collinear Collinear Collinear 
Cluster state state saving state x state y 

4.000 
3.914 
4.213 
3.769 
4.105 
4.667 
4.637 
4.742 

4.000 
4.000 
4.500 
4.000 
4.500 
5.000 
5.000 
4.875 

0.000 
0.086 
0.221 
0.231 
0.395 
0.333 
0.363 
0.133 

4.000 
4.000 
3.500 
4.000 
3.500 
3.000 
3.000 
2.815 

4.000 
4.000 
3.500 
4.000 
3.500 
3.000 
3.000 
3.125 

surrounding spins are free to reorient and although this is a weak effect it might be 
argued to dominate when the impurity concentration is low. The energy gain is also 
modest but should still readily dominate the spin-orbit coupling energy and itinerancy 
effects restricted to so few spins. 

Cluster ( b )  is a ‘balanced’ cluster with a basic rotation of 30”. This simple picture 
survives the freeing of surrounding impurities and is surprisingly stable surviving 
approximately to when the impurity spin is half the length of the host spins. The 
energies show that this cluster is badly oriented losing a full bond per impurity of 
‘static’ energy. The energy saving from the non-collinear component makes up only 
a small fraction of this energy and so the quantisation direction would need to be 
stabilised by similar clusters elsewhere in the crystal oriented in other directions. 

Cluster (c) is the first example of an ‘unbalanced’ system. It is also an anticluster 
with a basic 90” rotation. For a ‘balanced’ cluster the total orthogonal spin component 
in each plane necessarily vanishes because of the symmetry, but the same is not true for 
an ‘unbalanced’ cluster. A careful calculation of this component for this cluster shows 
that it is almost precisely zero, driven there by the local antiferromagnetic correlations. 
This fact will prove important in our choice of experimental probe for non-collinear 
clusters. For comparison, the result for the cluster with V fixed is also given and the 
inclusion of V is seen not to change the basic picture. There is no change in the 
collinear energy if the quantisation direction is changed and the energy saving from 
the non-collinear component is much larger than for cluster ( a ) .  

Cluster ( d )  is a ‘balanced’ cluster with a basic 90” rotation. The decay of the 
rotation angles as a function of the distance from the impurity is clearly observed. The 
cluster is very stable being present even when the impurity spins are half the length of 
the host spins. The collinear energetics of this cluster are the same as cluster (b) but 
the non-collinear impurity is almost twice as stable. 

Cluster ( e )  is an ‘unbalanced’ cluster with a basic 90” rotation. Once again the total 
orthogonal component in each plane is small, although not negligible for this cluster 
which is rather small. The cluster is very badly oriented costing two bonds per impurity 
and although the non-collinear saving is more than in cluster (b ) ,  it is still only minor. 

The coupled impurity calculation of cf) shows that firstly, the coupling is strong 
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with the intermediary spins taking advantage of the second cluster, and secondly, that 
the two clusters are coherent with the symmetry of a single-Q state aligned parallel to 
the Cartesian direction joining the two clusters. The ‘static’ contribution also favours 
the single-Q phase suggested by the non-collinear impurity. The single impurity of 
cluster ( e )  where Y is held fixed is directly comparable with the full two-impurity 
calculation. The rotations are extremely similar although the non-collinear component 
achieves a much smaller energy gain. 

If we compare all the clusters (a, b, e, f )  in table 1 then we see that the clusters 
which are most susceptible to non-collinear components have also the worst ‘static’ 
contributions. These clusters need to be parasitic on other collinear regions of the 
crystal. The anticlusters (a, c) have degenerate ‘static’ contributions and the non- 
collinear effects break the degeneracy suggesting further stability for clusters oriented 
in the chosen directions. The magnetic energies favour neighbouring impurities on 
opposite sublattices and this opposes our mechanism. Is this the source of the differences 
in the behaviours of MnCu and MnNi? 

The spin correlations in the orthogonal component are extremely well described as 
a ‘type I’ collinear state orthogonal to the quantisation direction. These states are local 
multiple-Q distortions. 

3. Phase transitions 

We now move on to an interpretation of our results in terms of what they suggest for 
the real systems. 

If we consider a doping level of lo%, which is low for the type of alloy usually 
considered, then, if the impurities are independent, the fraction of spins with two or 
more nearest-neighbour impurities is about and with three or more is about $. In 
order for our mechanism to be operable, however, there is also the restriction that 
the impurities should be on the opposite sublattice and this cuts down the relevant 
impurity configurations by an order of magnitude. Nevertheless this is the sort of 
concentration where our model would suggest that a sizable fraction of spins would 
start to generate non-collinear components. 

As the concentration is increased, initially the non-collinear impurities would be well 
separated. Although in our classical model the impurities yield long-range distortions 
that would couple all the impurities together and force long-range coherence, in 
real materials anisotropy and itinerancy would severely weaken the coupling and the 
impurities would start out being independent at most reasonable temperatures. These 
impurities would be the precursor phenomenon to a spin reorientation phase transition. 

While the impurities are independent, the actual direction for the orthogonal 
component would be chosen to be parallel to a Cartesian direction by the local 
spin-orbit coupling. As the concentration of impurities is increased, the impurities 
will start to interact and to align in order to optimise the Heisenberg contributions. 
The Heisenberg interactions are optimised by keeping all the orthogonal components 
parallel. 

The next idea which becomes relevant is that of ‘phase coherence by percolation’. 
We may consider the non-collinear impurities as randomly distributed, weakly inter- 
acting objects. Impurities within a certain range will align and ‘droplets’ of coherently 
connected impurities will form. Long-range phase coherence occurs when one of these 
‘droplets’ percolates through the entire system. This is a more satisfying picture for 
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how a phase transition might occur, but there is one rather important complication. 
The non-collinear impurities that we have found are tied predominately to one of the 
two spin sublattices. The coupling of ‘balanced’ clusters to neighbouring planes is very 
weak. Indeed the circled atoms in figure 3 do not couple to the calculated impurity 
at all. There are two natural choices of coupling between layers which correspond to 
single-Q states in x and y directions respectively. This ‘degeneracy’ would be broken 
by any long-range phase coherence and local configuration fluctuations would decide 
which of the two directions would be favoured. Cluster (f) is an example of just such 
a configuration. The two clusters are on different sublattices and are coupled to each 
other via the U spins. U and U’ form two neighbouring ferromagnetic chains which 
are oriented in opposite directions and pick out the single-Q phase oriented parallel 
to the line joining the impurities. The picture for the phase transition then becomes a 
competition between two types of ‘droplets’ which are predominately x- and y-directed 
single-Q states. Eventually one of the two types of ‘droplets’ forms the macroscopic 
cluster and the symmetry is truly broken at the phase transition. 

The phase coherence within a ‘droplet’ would be expected to be the direction of 
the orthogonal spin component and not the single-Q character. Spin-orbit coupling 
acting on the dominant single-Q component would decide the direction of the orthog- 
onal component. The minor single-Q component would lose its spin-orbit coupling 
contribution if the coupling to the ‘droplet’ dominates, which is to be expected since 
the coupling is on the exchange energy scale. The ‘droplets’ ought to be classifiable by 
the Cartesian direction of the orthogonal component, which might act like an Ising 
variable in a description of the phase transition. It is important to realise that some of 
the components would be forced to lie in an orthogonal direction to that suggested by 
spin-orbit coupling and this is a crucial experimental consideration. 

The state that is transitted into by this line of argument is a double-Q phase with 
a dominant Q corresponding to the original phase coherence and a minor Q corre- 
sponding to the coherently coupled impurities. Such a phase would have orthorhombic 
symmetry and just such a phase is found in the expected place in the MnNi phase 
diagram [6].  

We are now in a position to try to answer the question of whether spin wave 
softening would survive the inclusion of disorder into the description. The spin wave 
in the pure description creates a single-Q spin distortion in an orthogonal direction 
to the existing quantisation direction. At the pure phase transition this spin wave 
becomes soft and the fluctuations take the state into the new multiple-Q ground state. 
In our disordered description we have local multiple-Q distortions; the non-collinear 
impurities. Each impurity might be expected to ‘go soft’ at different temperatures 
according to the local configuration of impurities. Local multiple-Q excitations would 
be expected to be low energy at the condensation of the impurity, but once the impurity 
becomes fairly stable, the internal excitations would be expected to drift back to higher 
energies. The residual low-energy excitations would be associated with changes in the 
boundaries of the clusters and not a volume effect as suggested by the pure transition. 
We would therefore expect a large quantity of low-energy scattering in the vicinity of 
the transition and above in temperature but not a well defined collective excitation 
corresponding to a softened bulk spin wave. 

Unfortunately the transition that we predict is too messy to be picked up by 
something like a spin wave excitation which requires magnetic coherence over long 
distances to be easily measurable and is therefore likely to become lost in alloy 
disorder. Instead the transition must be found with a macroscopic bulk experiment, 
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such as the magnetic susceptibility, specific heat or magnetic Bragg scattering, which 
are more sensitive to this less homogeneous but sharp type of transition. The other 
natural line of experimental attack is to try to observe the precursor phenomena in 
the untransformed material. With this in mind, we look for the signature of our non- 
collinear impurities with the more local probe of magnetic diffuse neutron scattering 
in the next section. 

4. Diffuse scattering 

We now move on to considerations of how we might experimentally verify the existence 
of the local non-collinear impurities we predict. The natural probe to consider is 
magnetic diffuse neutron scattering. 

Magnetic diffuse scattering supplies information about the Fourier transform of 
spin distortions or fluctuations away from the average : 

6S(K) = zexp(iR.K)GS(R) 
R 

where 6S(R) is the change in spin on the site R, away from the average spin as 
suggested by the Bragg scattering. The observed scattering intensity is proportional to 
[20] the square of the spin component orthogonal to the momentum transfer of the 
neutron, namely K :  

There are three main considerations : firstly, the short-range structure of the scat- 
tering within a single Brillouin zone; secondly, the decay of the scattering a’s the 
magnitude of the momentum transfer increases; and thirdly, the angular dependence 
of the scattering. 

The first consideration yields the basic ‘symmetry’ of the spin distortion around 
the impurities. If the scattering is peaked at positions corresponding to a regular spin 
arrangement, then the local distortion has the same symmetry as the relevant spin 
structure. The special spin structure may correspond to the original spin structure or 
to a new spin structure which has been locally stabilised by the impurities. 

As with Bragg scattering, the decay of the scattering as the momentum transfer is 
increased yields the magnetic form factor, from which the spatial extent of the orbital 
harbouring the spin can be deduced. The form factor will not be directly of interest to 
us, since the spin almost certainly resides in the d orbitals on the manganese atoms. The 
form factor of these orbitals is well understood and yields a smooth minor correction 
to the scattering intensity. 

The angular dependence of the scattering is dominated by the fact that the scattering 
is orthogonal to the spin direction. Usually the direction of the spins can be deduced 
from an angular analysis of the magnetic Bragg scattering, and then an angular analysis 
of the magnetic diffuse scattering indicates whether or not the distortions are parallel 
to the underlying spin structure or not. This is precisely what is required in order to 
demonstrate the existence of a non-collinear component to the spin distortion. 

The experimental situation we have in mind, is of a single-domain single crystal of 
lightly doped manganese which is a collinear antiferromagnet with a sizable c / a  ratio 
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[l]. The normal situation is of a multi-domain single crystal for which even the ground 
state is ambiguous, but, with a single collinear domain the ground state is well defined, 
and whether or not there are static local non-collinear distortions is an interesting and 
perhaps answerable question. 

For the present model there are two relevant spin components: the ‘parallel’ 
component, including the original component which is lost into the non-collinear 
component and the impurity spins, and the non-collinear component itself. Assuming 
that the original spins are parallel to the z axis and that the non-collinear component 
is parallel to the x axis, then the magnetic diffuse scattering can be reduced to 

Z ( K )  = 16SIII2 + 16S,I2 - I6S1,R, +6s,12,12 

Z ( K )  = IssI,Rx - 6S,R,I2 + R;(16s,l12 + 16S,I2) 

(4.3a) 

(4.3b) 

in terms of the parallel, 6 Sil, and perpendicular, 6 S,, spin components. 
The most obvious test for non-collinearity involves looking at momentum transfers 

parallel to the original spin direction. The scattering reduces to Ids, 1 2 ,  which vanishes 
in the absence of a non-collinear component. Unfortunately, for our model, the per- 
pendicular component in this direction is relatively modest. The cause is fundamental 
to the mechanism inducing the non-collinear moments. For momenta parallel to the 
original moment direction, the perpendicular component only depends on the total spin 
component in each of the x-y planes. Since the non-collinear component is basically 
a Nbel fluctuation in an x-y plane, there is only a small component of total spin 
in each plane. For the balanced clusters the component vanishes identically, whereas 
for the unbalanced clusters the component is small and shrinks as the cluster size is 
increased (see figure 5(e) ) .  Only for the two-impurity cluster calculation of figure 5 ( f )  
is the perpendicular component likely to be non-negligible, but even here it is almost 
indistinguishable from zero. For this final situation, the Nbel fluctuation is balanced by 
components in two planes and this is effectively a minor component of the original spin 
density wave but in the non-collinear component. The magnetic diffuse scattering for 
momentum transfer parallel to the original spin direction is calculated for the relevant 
clusters in figure 5. The normalisation used is such that one replaced spin would yield 
unit scattering intensity and so this ‘parallel’ scattering is clearly minor. It is unlikely 
that this measurement would be experimentally viable. 

The non-collinear components correspond to local multiple-Q fluctuations. This 
suggests a second possible way to look for non-collinear distortions. Any non-collinear 
magnetic diffuse scattering from our mechanism is strongly peaked around the magnetic 
Bragg spots corresponding to the spin density waves perpendicular to the one present. 
Unfortunately, scattering around these Bragg spots does not prove the existence of 
a non-collinear component. Although in our model such scattering would constitute 
proof, if the lengths of the spins were allowed to vary, then simply extending the lengths 
of the nearest-neighbour spins on the same magnetic sublattice as the impurity would 
induce precisely the same scattering [12]. It is difficult to understand why these spins 
might want to extend, whereas for our model, simple Heisenberg interactions induce 
the desired effects. Nonetheless, scattering peaked at ‘would be’ magnetic Bragg spots 
does not constitute unambiguous proof of a non-collinear component, although we 
would consider it indicative. 

The magnetic diffuse scattering from the sum of both the parallel and perpendicular 
components is plotted through magnetic Bragg spots and ‘would be’ magnetic Bragg 
spots in figure 5 ,  in the combinations that would be experimentally observed. Let us 
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Bmgg Bra9  
Figure 5. The magnetic diffuse scattering per impurity from selected clusters. The scattering 
from the bare impurities is depicted by faint broken curves for reference and the clusters 
are oriented in both directions and with both relative orientations between the spin and 
lattice. Details are supplied in the text. The bare impurity scattering defines the shape, 
the collinear component is peaked at the magnetic Bragg spots and the non-collinear 
component is peaked at the ‘would be’ magnetic Bragg spots. 

focus on figure 5(a). The first curve to study is the broken curve. This curve corresponds 
to the scattering from the collinear cluster with just the impurity spins removed and 
all the remaining spins in their original positions. This scattering, with the angular 
factor removed, should be compared to the nuclear diffuse scattering and measures 
the short-range correlations between the impurity atoms themselves. The important 
contribution to us is the excess magnetic scattering over and above this contribution. 
For our more exotic impurity configurations this non-magnetic contribution has a 
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lot of irrelevant structure which will disappear when many impurities with different 
configurations are averaged over. 

When we allow the surrounding spins to reorient, there is an immediate complica- 
tion due to the local symmetry breaking. If we assume that the neutron sees a ‘frozen’ 
non-collinear distortion, i.e. the quantum fluctuations are on a very long time scale, 
then the direction of the non-collinear component breaks the spin symmetry in the 
x-y plane. If we transfer momentum parallel to the x axis, then we assume that the 
non-collinear component is either parallel or perpendicular to the momentum transfer 
and denote such calculations Zl, and I ,  respectively. It is important to realise that Zll 
and I ,  are manifestations of the same non-collinear impurity, and reflecting our path 
in x = y will convert one type of scattering into the other. The experimental intensity 
might be expected to be an average over the two, corresponding to many uncorrelated 
clusters. 

There is a second complication. As well as the breaking of the local spin symmetry, 
there is an independent breaking of the spatial symmetry. If we study figure 3(a),  then 
the spins marked T’ rotate in the opposite direction to T which breaks x-y symmetry. 
The non-collinear component can then orient either parallel to the line joining the two 
Ts or parallel to the line joining the two T’s. These two types of choice correspond to 
two different types of spin-lattice coupling and are denoted by Cartesian superscripts, x 
and y .  The choice between Zx and Z Y  intensity is physical and the experimental systems 
will be expected to have a predominance of one type of scattering. The configuration 
which has the smallest relative component of (100) when compared with (Oll), is likely 
to be the experimental configuration, stabilised by a spin-orbit coupling contribution 
which has been omitted from the calculations. 

We are left with a final complication which is the relative orientation of the non- 
collinear component to the collinear component. In the presence of the non-collinear 
component, spins rotate away from the z axis and take up positions at particular fixed 
inclinations. If the momentum transfer happens to become parallel to a particular 
spin, then the neutron ceases to scatter from it. This fact then leads to a breaking of 
the symmetry for scattering in the plane of the spins. For a fixed K,, we find different 
scattering for positive and negative values of K,. This final complication then explains 
why there are sometimes two curves with the same labels, corresponding to orienting 
the non-collinear component of the spins in the cluster in opposite directions and 
changing the relative sign of 6 S ,  and 6SlI in (4.3). 

For all examples the observed scattering will be a form of average over the presented 
curves. The path traversed in reciprocal space passes across the most likely regions for 
experimental investigation. We assume that the collinear spin density wave is parallel 
to the z axis. On the left-hand side of the figure, we start with the brightest magnetic 
Bragg spot; the (110) spot. We then move to the ‘would be’ magnetic Bragg spot 
corresponding to a spin density wave parallel to the x axis; the (100) spot. We then 
move to the main beam and then out to the magnetic Bragg spot which vanishes 
because the momentum transfer is parallel to the spin; the (001) spot. Finally we 
move to the brightest ‘would be’ magnetic Bragg spot where we might expect the non- 
collinear scattering to be the strongest; the (011) spot. All contributions are strongly 
peaked at both magnetic Bragg spots and ‘would be’ magnetic Bragg spots and the 
source of this scattering is easy to understand. 

The scattering induced at the existing magnetic Bragg spots comes predominantly 
from the loss of the existing moments, which are turned into the non-collinear compo- 
nents. In the collinear ground state, all moments are optimally positioned and therefore 
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any change in the collinear component must have the same symmetry as the original 
spin density wave. This is observed in all our calculations and may be deduced by 
noting that the peak at (110) is huge but that the peak at (001) is invariably absent, 
due to the orientational factor (1 -I?:) which eliminates only the collinear component. 

The scattering at the ‘would be’ magnetic Bragg spots is dominantly non-collinear. 
This is the straightforward interpretation of the non-collinear components as ‘bound 
states’ of multiple-Q behaviour. The peaks are observed at both (01 1) and (100) ‘would 
be’ magnetic Bragg spots, although in order to save spin-orbit coupling we might have 
expected the second contribution to vanish. The N6el fluctuations in the x-y layers 
are a superposition of the two orthogonal spin density waves, but are orientated in a 
unique direction. One of the two components is orthogonal to where the spin-orbit 
coupling would align it and so yields scattering at (100). For the coupled pair of 
impurities depicted in figure 5( f ) ,  one of the two spin density waves dominates and so 
the (100) scattering is severely curtailed, although there is still a large peak at (011). 
This leads to a third possible way to find a non-collinear component and to the first 
viable experimental possibility. 

Magnetic diffuse scattering makes quite a difficult experiment [21] and so the 
observation of a non-collinear component should be attempted with the dominant 
scattering contribution if possible. The dominant non-collinear scattering in our model 
arises at the ‘would be’ magnetic Bragg spots. Probably the best way to show the 
existence of a non-collinear component is to compare the magnetic diffuse scattering 
around the (100) and (011) positions. In terms of the magnetic symmetry group of the 
original spin density wave, these two positions are equivalent. One of the two positions 
is further from the origin and so there should be a minor reduction in intensity from 
the form factor, but the major effect should be the orientational factor. 

If we assume that there is no residual ‘coupling’ between the different components, 
then the intensity averaged over many impurities would be 

and then the ratio of the intensities at (01 1) and (100) is 

(4.4) 

In the absence of a non-collinear component this ratio would be i, and the presence of 
a non-collinear component would increase it. The non-collinear scattering is strongly 
peaked at these points, whereas the collinear component is not peaked, although the 
collinear component is expected to be intrinsically larger. The spin-orbit coupling 
pushes the peak into ISS:12 rather than 16S:I2. This is due just to the fact that N6el 
fluctuations involve two spin density waves and the major contribution goes into 18s: l 2  
whereas the minor contribution goes into 16s: 1 2 .  The parallel component involves 
the impurity spins themselves, together with the loss of spin into the non-collinear 
component, whereas the non-collinear component is only relevant for the particular 
combinations of impurities which bind a non-collinear component, suggesting that 
collinear scattering dominates. 

For the cases we have considered, the values of R are 1.063, 1.500, 0.719, 1.500, 
1.289 and 1.306 for (a )  through to (f) respectively and we believe that extensions into 
the real systems should be measurable. 
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We have allowed only a small fraction of the spins to rotate. We enforced this in 
our calculations in order to stabilise the collinear phase, but we must point out the 
consequences of this assumption. The diffuse contribution from the impurities them- 
selves is probably overemphasised in comparison to both the non-collinear component 
and the collinear spin component. The minor reorientation of the more distant spins 
has been omitted, and although the more distant spins only move a little, there are 
many of them which would strongly enhance the non-collinear component. For cluster 
cf )  the situation is even worse, because some of the frozen spins should form an (e)-like 
configuration which has been neglected. The shape of the non-collinear scattering is 
the relevant quantity to be extracted from our calculations, and this is clearly peaked 
at the ‘would be’ Bragg spots. 

5. Conclusions 

We have found a new physical mechanism for the stabilisation of static short-range 
non-collinear components in antiferromagnets with long-range collinear order. The 
mechanism only applies to non-bipartite systems and relies heavily upon topological 
frustration to operate. We have found two ways to interpret the effect. Firstly, 
in frustrated collinear antiferromagnets, each spin has both parallel and antiparallel 
neighbours with the antiparallel neighbours dominating. If the local dominance is 
cancelled out because impurities replace some of the antiparallel neighbours, then 
the relevant spin can gain nothing from the collinear system and so it forms a local 
non-collinear ‘bound state’, gaining energy from antiferromagnetically polarising its 
neighbours. This argument can be applied to all frustrated systems. Secondly, for the 
face centre cubic lattice, there is a two-dimensional Goldstone mode which corresponds 
to a non-collinear Niel fluctuation in one x-y plane. Even a single impurity acts as an 
attractive potential to this Goldstone mode in a neighbouring layer, and because the 
problem is essentially two dimensional, the impurity potential induces a non-collinear 
bound state. 

These results rely heavily on a Heisenberg description. Quantum mechanical 
fluctuations and itineracy both interfere, and result in the stabilisation of the collinear 
phase. We believe that short-range non-collinear components are likely to survive the 
inclusion of the neglected phenomena. Our first argument is local in content and likely 
to remain relevant, although the Goldstone mode is likely to be raised to a higher 
energy thus becoming less relevant. 

A consideration of the interactions between non-collinear impurities, suggests a 
phase transition into an orthorhombic state as the concentration of impurities is 
increased and just such a transition is observed in the y-MnNi system [6]. The likely 
description of the transition involves percolation of a non-collinear cluster and this 
inhomogeneous description is unlikely to support a softening spin wave excitation as 
has previously been suggested [14]. 

The natural probe to look for non-collinear impurities is magnetic diffuse scattering 
from a single-domain single crystal. Unfortunately, our mechanism suggests that the 
natural technique, of looking for scattering from momentum transfer parallel to the 
long-range spin order, will yield only minor scattering and that the best way to find 
the non-collinear impurities is to study the angular dependence of the magnetic diffuse 
scattering near ‘would be’ magnetic Bragg spots. 

We believe that the ideas in this paper are more relevant to y-MnNi than to 
y-MnCu, although the second system seems of more experimental interest [12]. 
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We should mention that magnetoelasticity is huge in these systems and involves 
a certain amount of ‘unfrustrating’ distortion. The ‘size’ effects and local spatial 
rearrangements around impurities is an important effect for future consideration. 

The theory awaits experimental verification or refutation. 
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Appendix A 

Topological frustration involves the necessity of ferromagnetically aligned spins even in 
the classical antiferromagnetic ground state. One measure of the degree of frustration 
is the fraction of ferromagnetic bonds in the ground state. If Pf and Pa denote the 
probabilities of the bonds being ferromagnetic and antiferromagnetic respectively, then 
for any configuration {Si} : 

where Z is the coordination number and ( i i ’ )  denote nearest neighbours and run over 
all bonds. In the antiferromagnetic ground state, the spins must be chosen to minimise 
the ferromagnetic bonds. Even if we cannot solve this problem, for a periodic array of 
spins, it is easy to obtain a bound for these bond probabilities. The problem is best 
solved in reciprocal space, where 

where the inequality comes directly from the theory of eigenvalues (namely y k )  and 
eigenvectors (namely sk), in terms of the normalised structure factor: 

It is clear that -1 < yk < 1 and that Pf > (1 + ymin)/2 for the antiferromagnetic 
ground state. For each lattice, the frustration can be measured by studying y k .  For the 
face centre cubic lattice, ymin = -; and so Pf = ;. 

Appendix B 

The classical limit of the Heisenberg model involves pointing each spin parallel to the 
local field defined by the sum of its nearest neighbours. 
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For ‘unbalanced‘ systems with three distinct types of non-collinear spins, this 
criterion becomes : 

[ k  B ;”, C 1, :] [ F ]  = [;:;Is 

for couplings A , B , C  and a,/?,? which depend on the cluster type and Lagrange 
multipliers 1, which are chosen to normalise the spins X. 

On the assumption that there is a unique orthogonal component, we may set 

x = cos x s  + sin x S (B2) 

where S is perpendicular to the quantisation direction S. The equations then reduce 
to 

a(.) sin t + A  sin(u - t )  + B sin(u - t) = 0 

P ( K )  sin U + A sin(t - U) + C sin(u - U) = 0 

?(IC) sin U + B sin(t - U) + C sin(u - U) = 0 

which are easily solved. 
Note that the matrix in (Bl) is singular with a zero eigenvalue and with an 

eigenvector corresponding to the bound state. 
For ‘balanced’ systems there is a complication because only the non-collinear 

component is ‘balanced’. The coupling between X and X‘ has opposite signs for the 
two components and we find 

which reduce to 

a ( ~ )  sin t + A sin(u - t )  + B sin(o - t )  + c sin 2t = 0 

P(K) sin U + A sin(t - U) + C sin(u - U) + b sin 2u = 0 

? ( K )  sin U + B sin(t - U) + C sin(u - U) + a sin 2u = 0 

which are again easily solved. 
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